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Abstract
The clinical application of dynamic ECT reconstruction

algorithmsfor inconsistentprojection(IP) datahasbeenbeset
with dif£culties. Theseinclude poor scalability, numerical
instability of algorithms, problems of non-uniquenessof
solutions, the need to oversimplify tracer kinetics, and
impractical computational burden. We present a stable,
low computationalcost reconstructionalgorithm which is
able to recover the tracer kinetics of several hundredimage
regions at realistic noise levels. Through optimal selection
of a small set of non-negative basis functions to describe
regional time-activity curves(TACs), we areable to solve for
the £rst-ordercompartmentalmodel kinetics of eachregion.
A non-uniform resolution pixelization of image space is
employed to obtain highestresolutionin regions of interest.
Thesespatialand temporalsimpli£cationsimprove numerical
conditioning, provide robustnessagainst noise, and greatly
decreasethe computationalburdenof dynamicreconstruction.
We apply this algorithm to IP phantomdata whose source
distribution, kinetics and count statisticsare modeledafter a
clinical myocardialSPECTdataset.TACs of phantomregions
arerecoveredto within a meansquareerrorof

���
, anaccuracy

which provessuf£cientto allow for quantitative detectionof a
myocardialperfusiondefectwithin healthy myocardialtissue.

I . INTRODUCTION

First-order compartmentalmodels are routinely used to
describepharmacokineticswithin biological systems. The
responsesof such modelsare governedby £rst-orderlinear
differential equations, usually driven by a single forcing
function correspondingto the input of a particularsubstance
into the compartmentalsystem. As such, the responsestake
the form of the convolution of the sums of decaying real
exponential terms with this input function. Exponential
spectralanalysisinvolvesthe quanti£cationof the coef£cients
of theseexponentialterms(modes)within the compartmental
model response, in terms of a preselectedspectrum of
exponential functions [1]. This approachobviates the need
for iterative estimation of the non-linear parameters(rate
constants)of a compartmentalmodel, allowing convenient
solutionvia linear methods. Unfortunately, owing to the fact
that sums of decaying real exponentials are not uniquely
parameterizedin the presenceof noise, solutions in terms
of spectralcoef£cientsmay not be unique [2, 3]. A strong
dependencemay consequentlyexist betweenthe particular
solutionobtainedandthenoisepresentwithin thedata.

We have previously shown how unique representations
of compartmentalmodel responsesmay be obtainedthrough
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the representationof an exponential spectralbasisusing an
orthogonalapproximatingbasis[4, 5]. This techniquegreatly
reducesproblem dimensionand ensuresthat any solution in
termsof thecoef£cientsof this basiswill beunique.However,
this schemehastwo disadvantages:

1. The new basis functions possessnegative values, and
in general require negative coef£cients in order to
approximateanexponentialspectralrange.

2. The coef£cients obtained do not have obvious
physiologicalsigni£cance.

In this paper, we addressthe former issueby transforming
the orthogonalbasissetso that a broadexponentialspectrum
may be approximatedin terms of non-negative basis(NNB)
functions, linearly combinedusing non-negative coef£cients
(NNC).

We cannotaddressthesecondissueusinga changeof basis
functions,sincesucha changewill almostinvariably leadto a
representationin which thekineticparameterswill bedevoid of
physiologicalmeaning.However, thisconsiderationis arguably
spurious if the time-activity curves (TACs) for all image
regionsareaccuratelyrecovered,sinceany modelmaythenbe
£t to these. Our primary goal in this work is to demonstrate
how the NNB-NNC representation,used in conjunction
with a non-uniformresolutionreconstructiongrid, leadsto a
tremendousreductionin thedimensionof theproblemof direct
dynamicemissioncomputedtomography (ECT) reconstruction
from inconsistentprojections. By minimizing the numberof
parameters,this approachtendsto improve problemcondition,
leadingto anoverdetermineddynamicimagingsystemmatrix.
This in turn improvesrobustnessagainstnoisewhich facilitates
therecovery of TACsto anaccuracy suf£cientto allow clinical
diagnosisbasedon resultsobtained.

I I . PROBLEM FORMULATION

A. Kinetic model
Sinceoneof themostcompellingapplicationsof algorithms

for direct reconstructionfrom inconsistentprojections(DRIP)
lies in clinical myocardial ECT, we chooseto addressthe
dynamicsof the £rst-ordersinglecompartmentalmodel. This
model is appropriatefor tracerssuch as ��� m Tc-teboroxime,
whoseuptake and washoutfrom the myocardiumhave been
shown to correlatewith blood ¤ow and consequentlymay
serve as a good indicator of myocardial defectsassociated
with ischemiaand infarctedtissue[6]. This kinetic model is
representedschematicallyin Figure1.

Accordingto thismodel,thetime-activity within region � is
givenby: ���
	���
���� � ��� 	���

���������� ��! (1)



where � 	���
 is the measuredblood input function, and the
‘
�
’ operator denotesconvolution. The constants

� � and��"
representthe wash-in and wash-out coef£cients of the

compartment,respectively. We assumethroughoutthat the
blood input function has been obtained via arterial blood
sampling. In caseswherethe projectiondataare reasonably
consistent, the input function may be estimatedfrom the
activity within theleft ventricularbloodpool [7].

B. Geometric model
Without loss of generality, for purposesof illustration we

refer to the 2D non-uniform resolutionpixel grid shown in
Figure2.

The TAC
���$#&%&'

is assignedto the � th region ( �$	*)�
 ! � �
+ !-,�!/.0././!01 . In general,we requirethat the underlyingsource
distribution ( 	*)�


becompletelysegmentedinto regionsin this
way.

C. Reconstruction problem
Givena setof projectionmeasurements23 	54 	���
�
 acquiredat

times
�6�7�98 ! %��;: ! + !/././.0!$<>= + ! at angles

4 #?%?'
, our objective

is to recover the time activity curves
���
#@%&'

for all 1 regions.
This amountsto reconstructinga dynamicimagesequenceof
length < .

I I I . ALGORITHM FORMULATION

This algorithm representsan extensionof the convolved-
orthogonalbasisreconstructionalgorithm(COBRA) described
in [5]. The formulationis very similar to COBRA, exceptthat
we now introducea new basisand non-negativity constraints
on the reconstructedTACs. We alsogeneralizethe algorithm
to accommodateirregular time sampling of projections.
Owing to the small number( 1BA + :

) of regions presentin
the segmentationto which COBRA was appliedin [5], these
constraintsproved unnecessary. However, their imposition
is essential to ensure that physically realistic TACs are
recoveredin thesolutionof problemsof largerdimension.For
completeness,a brief overview of the COBRA framework is
given, before the extensionsare presented. In addition, the
entireprocedurefor the generationof the TAC approximating
basisis illustratedschematicallyin Figure3.

� 	C��

� �

��"

D 	���


Figure 1: Compartmentalmodel for E5EGF Tc-teboroxime in the
myocardium. Here, HJI�K9L representsthe tracer activity within the
myocardium,while othersymbolsarede£nedwithin thetext.
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Figure2: Non-uniformresolutionpixel grid. Sucha grid is proposed
in orderto offer increasedresolutionin areasof clinical interest,while
reducingthe overall problemdimension. Although the pixels of the
highestresolutionregion arenot labeledin the£gure,region numbers
aresimilarly assignedto thereto.

A. Spectral representation of single compartment
model kinetics

Our kinetic model formulation begins by generalizing(1)
to the casewherethe TAC of eachregion may be composed
of linear combinationsof the responsesof several underlying
compartments. This is often useful for modeling tissue
heterogeneity, partialvolumeandspillover effects[8]. We thus
have: ���
	���
M� NO

NP�Q �
� NP

�
� � 	���

��������RS�T��! (2)

where UV is thenumberof exponentialmodes(compartments)
from which theTACsmayderive.

Sincethealgorithmwill bebasedin discretetime,wesample
the imaging time interval at < points

�W�X�98 ! �98 Y �>Z �98 ! %[�: ! + !/././.0!$<\= +
giving:

���
#&%@']�����
	���
M^ � �8 Q$_
` 	�� = �985
 ! (3)

where
` 	���


is theDiracdeltadistribution.

In (2) we seethat eachTAC dependsnon-linearlyon the
parameter

��"
. As the projection measurementsconstitute

sumsof TAC values, they are composedof weightedsums
of convolved exponential functions. The determinationof
the values of these parametersconstitutes the extremely
ill-conditioned problem of resolving the components of
exponentialsums[2, 3]. We wish to linearizetheproblemand
improve its condition. To do this, we employ the exponential
spectralmethod of Cunninghamet al. and de£nea set of
sampled exponential functions which span the range of
physiologicallyfeasiblecompartmentalmodesexpectedwithin
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Figure 3: Schematicdiagram illustrating the steps involved in
generatingthe oblique-rotatedconvolved orthogonal basis. The
rightmostcolumnreferencestherelevantequationsin thetext.

theimageddistribution [1]:

í NP
#?%h' � ������RS� 8�î ��! %r� : ! + !/././.0! U<\= + ! (4)

Uï
� + !0././.0! UV = + . (5)

It is important that ð
�

be small enoughto ensureadequate
sampling of the spectral functions. The number of basis
samples U< must be greaterthan or equal to the numberof
projectionsamplingtime points < , sincethe latterwill always
be a subsetof the former. While the latter may be irregularly
sampled,the former must be sampledregularly, for reasons
thatwill becomeclearshortly.

Typically, we desiretheability to modelthepresenceof the
the blood input function within the imageddistribution. This
correspondswithin thespectralcontext to convolution with an
exponentialbasisfunction (4) having

� NP" �òñ
. This function

is equivalentto theDiracdeltadistribution. Thespectralset(4)

is consequentlyaugmentedby:

í NO
#?%h' � ` #?%h' ! (6)

where
` #?%h'

is theunit sample.

We then form the
	 U<ôó UV 


matrix õ whose Uï th column
is

í NP
#?%?'

asde£nedin (4). Convolving eachcolumnof õ with
thebloodinput function � #?%?'�� � 	5% ð ��
 ! %]�7: ! + !/././.0! U<>= +

we
form: öø÷úù û�÷ � ûs÷"ýü�ü�ü û�÷

NO (7)

where we have retained only the £rst U< elementsof the
convolution,sothattherow dimensionof

ö ÷
is U< .

In realistic imaging scenarios,residual activity may be
presentin the imageddistribution, perhapsfrom a previous
tracerinjection. In orderthat suchan offset may be modeled,
weaugment

ö ÷
with acolumn:û�÷

NO
Y � �ÿþ

N^ (8)

wheretheright-handsideis acolumnvectorof U< ones.

B. Orthogonalization of spectral basis
We now invoke thesingularvaluedecomposition(SVD) to

£ndorthogonalbasisvectorsfor therangeof
ö ÷

. Thesearethe
left singular(column)vectors� NP of theSVD of

ö ÷
:

öø÷ � U������� ! U� � � � � " ü�ü�ü � NO
Y � (9)

where
�

is the matrix of right singularvectors,and
�

is the
diagonalmatrix of singularvalues. We associatethe discrete
time index

%
with eachrow of U� . Dependingon thedegreeof

accuracy requiredin the sampledrepresentationof the
���
	���


,
weutilize only the£rst

V	� UV of U� andde£ne:� ù � � � " üAü�ü � O . (10)

Typically,
V 
��

to 
 is suf£cient for myocardialimaging
applications.Figure4 shows thecolumnsof

�
when

V � 
 .

Eachcolumnof
�

representsa basisfunction,andwe have
plottedthesefunctionsin Figure4.

We referto the � P asconvolved-orthogonalbasisfunctions
(COBs).TheCOBwill, in general,possessnegativeexcursions.
SinceTAC valuesarealwayspositive, their usein large DRIP
problemsrequirestheimplementationof theconstraints:����
#&%@']� O

P�Q � � P ��� P #h%?' Z : ! %����
(11)

where� P � is the coef£cientof the ï th basisfunction for the� th region. Thevalue
� P #?%?'

correspondsto the
	5% ! ï 


th element
of
�

. Werecognizethattheconstraintsneedonly beenforcedat
theextremaof thebasisfunctions,aswell asat the£rstandlast
samplingpoints. Imposition of theseconstraintsis suf£cient
to precludenegative excursions. Equivalently, the setof time
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Figure4: Many of theelementsof � (samplesof theorthogonalbasis
functions)arenegative, asis obvious from theseplotsof thecolumns
of � .

indicesatwhichconstraintsareenforcedis givenby:� ù %���� P #?%�� + '���� P #?%?' ! � P #?%h' A � P #h% = + ' !
%$� + !-,�!/./.0./!/<\=W, ��!� P #?%�� + ' A � P #h%?' ! � P #h%?'��"� P #?% = + ' !%$� + !-,�!/./.0./!/<\=W, �� %$� : ! %$� < = + .

The left-handsideof (11) gives the the TAC valuefor the� th region at discretetime index
%
. The value # �%$&�'$ � <

correspondsto the number of time indices at which the
constraintsare imposed. We de£ne the total number of
constraints( ù # 1 .

Theconstraints(11)mayberewrittenasthematrixproduct:) �+*-,
(12)

where
*.��/103254�2

is ablockdiagonalmatrix.

We desire that
����$#&%&'

be non-negative for all � and%6�7�
. However, this leadsto a very large matrix

*
, whose

dimension scalesas the squareof the number of regions.
This approachconsequentlybecomesimpractical for higher
resolution reconstructionproblems, where the number of
regions is large, unlesssparsestorageis usedfor

*
. Even

undersuchcircumstances,the impositionof # 1 constraintsis
computationallyburdensome.

C. Construction of non-negative basis through af£ne
transformation

The problemdescribedabove would be greatly simpli£ed
if a non-negative basis,non-negative coef£cientrepresentation
was available. To this end we begin by expressing the
convolved original spectrum

ö ÷
asan approximationin terms

of theorthogonalbasis: öu÷ 
8� ,:9 ! (13)

where
, 9 �;/ O 4=< NO Y �?>

is amatrixof known coef£cients.

Employing theobliquerotationmethodproposedby Siteket
al. in [9], weintroduceaninvertiblematrix @ within theidentity@ � � @ , giving: ö ÷ 
 � @ � � @ , 9

(14)� � @ � � @ ,A9
(15)� 2ö 	 @ 
�,:Bi	 @ 
 . (16)

To yield the desiredbasis,the elementsof 2ö 	 @ 

and

,ABi	 @ 

mustobey:

UC 8 P Z : ! %r� + !-,�!/././.0! U<�! ï � + !�,�!0././.0! V� P NPB Z : ! ï � + !-,�!/.0./.0! V ! Uï
� : ! + !0././.0! UV � +

(17)
respectively, where UC 8 P is the (

% ! ï )th elementof 2ö 	 @ 

and� P NPB , the

	 ï ! Uï


th elementof

,:Bi	 @ 

.

In orderto £nd 2ö 	 @ 

thusspeci£ed,we formulatethecost

function:D 	 @ 
 � EGFIH N^8 Q �
O
PTQ �

	
UC 8 P 
 " .KJ 	 UC 8 P A :�
 !

O
P�Q �

NO
Y �

NP�Q �
	 � P NPB 
 " .LJ 	 � P NPB A :�


(18)

where J 	-
 is an indicator function assumingthe value unity
when its argumentis true. Clearly,

D 	 @ 

is discontinuous,

and cannot be minimized using conventional optimization
algorithms.It is possibleto replaceJ 	�
 with anapproximating
continuousfunction, such as a logistic function. However,
sincethereexist many solutionswhich satisfy (17), sampling
algorithmswhich do not requirecost function continuity can
easily£ndasolutionto (18). WeemployedAdaptiveSimulated
Annealing, using default algorithm parameters[10], to yield
thebasisshown in Figure5. Here,ASA terminatedwhenF(R)
waslessthan

: . 
 ó + : �3M
, a tolerancewhich proved suf£cient

for this applicationandcorrespondedto a maximumnegative
excursionof any basisfunctionof 2.7%of themaximumvalue
of the function. The small negative elementsof 2ö were set
to zero to prevent any negative valuesoccurring amongthe
reconstructedTAC samples.The ASA algorithm executedin
503minutesonaPentiumIII 850MHzprocessor.

D. Evaluating the accuracy of TACs approximated
using non-negative basis

It is importantto evaluatethe quality of the approximation
obtainedusingthe oblique-rotatedconvolved-orthogonalbasis
(ORCOB).To thisend,wede£nethemetric:

V
pow N #h%?' ! UN #h%?' ù ^ � �8 Q$_ N #h%?' = UN #?%h'

"

^ � �8 Q$_ N #?%?' " ó + :i:
(19)

where N #?%?' and UN #?%h' are the true andestimatedfunctionsto be
compared,respectively.
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Figure5: Oblique-rotatedversionsof the orthogonalbasisfunctions
whichappearin Figure4.

Let us take for example the basisset shown in Figure 5.
This ORCOB was derived from the COB functionsshown in
Figure4, which werein turn derived from an O5PQ�RTSIUWVXSZYIY
function exponentialspectrum,selectedby regularly sampling
the interval [ "]\	^ SZY �`_ba SZc

min
� �

. After augmentationof
the spectrumwith a unit sample,convolution with the input
function d ^fe cTV efgih3j � 8�î �lk _Im n was performed. Subsequent
augmentationwith constant function (8) was followed by
applicationof theSVD andretentionof only the£rst£ve o P .
Thisentireprocessis outlinedin Figure3.

Wecanapproximatethecolumnsof theconvolvedspectrump ÷
(shown in Figure6) usingtheORCOBfunctions(shown in

Figure5) giving: qp V Pp O qrsUut _ (20)

wherethe v Pv th elementof
t _ is w P NP_ and

qr
is a solutionofx O rsUyV"Y

.

Let thefunctions:z{ NP ^|e c a Pv V"Y a S a~}~}�}~a PQ���S a e V"Y a S a�}~}~}�a P�sR+S
(21){ ÷ NP ^|e c a Pv V"Y a S a~}~}�}~a PQ���S a e V"Y a S a�}~}~}�a P�sR+S
(22)

representthe Pv th columnsof
qp

and
p ÷

, respectively. We may
then £nd the maximum approximationerror among all the
convolvedspectralfunctionsas:Q

powmax

V �G�I�
NP�Q$_�� � � m�m�m � NO Y � Q pow

{ ÷ NP ^Ze c a z{ NP ^Ze c V�S } � �ia
(23)

a result which is entirely satisfactory. The { ÷ NP ^Ze c are plotted
versusthe

z{ NP ^Ze c in Figure6.

Until this point, we have preserved the regularsamplingof
the basisfunctionsto allow us to easily convolve the rotated
orthogonalbasiswith the input function. At this juncture,we
may samplethe ORCOBat the projectionsampletime points.
Element

e
of columnvector v of thesampledORCOBmatrixp

is givenby: { P ^|e c�V P{ P ^ [ ÷ c a[ ÷ VT� [��`[ gih V h98 a [ V"Y a S a~}~}~}�a P��� (24)

0 5 10 15
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

time (min)

ac
tiv

ity

Approximated spectrum
True spectrum        

Figure 6: The approximationof the convolved spectrumusing the
ORCOB(+) is shown versustheoriginal spectrum(solid). Only every
third spectralfunctionis shown for clarity.

The DRIP problem may now be reexpressedas one of
estimatingthe coef£cients w P � of the � P for all regions, so
thattheTAC of eachregionmayberecovered:z� ��^Ze c�V O

P�Q �
zw P � { P ^Ze c a e V"Y a S a~}~}�}~a ��R+S }

(25)

We mustnow specifyhow the
zw P � maybeestimatedgiven

theinconsistentprojectionmeasurements.

IV. PROBLEM SOLUTION

In order to solve the DRIP problemas linear system,we
mustconstructa matrix which maps

t \T� O 2'4 �
, containing

the w P � , to theprojectionbin measurements�� \�� � � 4 �
:�� V+��t a

(26)

where� is thetotalnumberof angularprojections,and � is the
numberof binsperangularprojection.

The constructionof
� \�� � � 4 O 2

has beendescribed
in detail previously [5]. Brie¤y, this matrix serves to express
each projection bin measurementin terms of the fractional
contribution of each imaged region to that bin, multiplied
by the fractional contribution of eachbasisfunction to each
region:

P�K� � ^|e c¡V 2
� Q � ¢

�� �6£ O
P�Q � w P

� { P ^|e c¤ V S a¦¥�a~}~}~}�a �§ V S a¦¥�a~}~}~}�a � }
Thematrix

�
containsthegeometricweightingfactors¢ andthe

basisfunctionvalues{ arrangedin sucha way that theproduct
in (26) is readilyeffected.

When£nepixelizationsof the imagespaceareemployed,
eachpixel contributes to only a handful of bins within each



angularprojection.Consequently, ¨ is verysparselypopulated.
This is

©
a fortunatecharacteristic,sincedensestorageof this

matrixbecomesprohibitive for largeproblems.

Previous experience[5] has shown that an unweighted
least squaresestimatoris able to provide virtually unbiased,
highly ef£cient estimates ª, at projection data noise levels
which are typical for dynamicSPECTstudies. This implies
that the statistical mismatch implicit in applying the least
squaresestimatorto Poissondatais not a signi£cantsourceof
estimationerror.

Consequently, we chooseto £nd the parameterestimate ª,
whichsolvestheconstrainedleastsquaresproblem:4 	 ª, 
 � EG«­¬®�¯±° 23 = ¨ , "

(27)² ù ,���/ O 2'4 � � � P � Z : ! (28)

where, � # � �9� ! � " � !$././.0! � O � ! � � " !$././.$.0././! � O 2 ' . (29)

Since all of the elementsof ¨ are non-negative, the
constraints(28)aresuf£cientto ensurethattherecoveredTACs
in (25)arenon-negative atall timepoints.

We henceforthrefer to this algorithm for the estimation
of

,
as the oblique-rotated convolved-orthogonal basis

reconstructionalgorithm(ORCOBRA).

V. NUMERICAL METHODS

Problem(27-28) constitutesa non-negative least squares
(NNLS) problem. As such,innumerablemethodsexist for its
solution. An excellent review of thesealgorithmsappearsin
[11].

Wedesireanalgorithmwith thefollowing characteristics:

1. Utilization of sparse matrix storage for matrix ¨ .
Algorithms which do not require input of the matrix¨ , but only the products, ¨ ) and ¨ � 3 , are especially
suitedto this application. This stemsfrom the fact that¨ is separableinto the element-by-elementproduct of
two matriceswhich eachcontainmany identicalblocks
[12, 5].

2. Preservation of numerical precision. The algorithm
shouldnot calculatetheproducẗ

� ¨ [11].

3. An iterative implementation,which re£nesa starting
estimateis desirablefor warm-startingof reconstructions
on higher resolution pixel grids based on coarse
preliminary reconstructions obtained on lower
resolutiongrids. We have shown previously how large
computationalsavings (



75% for 1024 pixels) may be

obtainedin this way [13].

We discussfour major approachesto the solution of the
NNLS problem.

A. Least distance problem
TheNNLS problemcanberecastasaleastdistanceproblem

(LDP). This is theapproachtakenby LawsonandHanson[14].
In preliminaryexperimentsusingthecodeprovidedin [14], we
found that the LDP-basedalgorithm performedpoorly when
appliedto largesparsesystems[13].

B. Quadratic program
Alternatively, problem NNLS can be reexpressedas a

quadraticprogram(QP)[11]³ 	 ª, 
M�]EG«­¬®=¯ �'´ , �1µ ,+�·¶ � , ! (30)

with D ÷úù ,���/ O 2 �5¸ Z *-, Zº¹ (31)

where µ � ¨ � ¨ ! ¶ � = , ¨ � U3 � (32)¸ �T» ! ¹ �º¼ ! * �+½ O 2 ! (33)

where
½ O 2 is an identity matrix of dimensionequalto thatof

theparametervector.

SinceproblemQP is a subproblemsolved at eachiteration
of many constrained non-linear optimization algorithms;
ef£cient,well-testedandnumericallyrobust codeexists for its
solution. Theformationof thematrix ¨ � ¨ is undesirableasit
introducesnumericalerrors,soconventionalQPmethodsmust
bemodi£edto obviatetheneedto calculatethis matrix. Gill et
al. describesuchanalgorithm,which is availableaspartof the
commercialLSSOLandNAG libraries[15, 11]. Unfortunately,
this implementationis not suitablefor largesparsesystems.

Oneof themorepromisingQP-basedalgorithmtestedsofar
is the block principal pivoting methodof Portugal et al. [16],
which is speci£callyintendedfor largesparseNNLS problems,
andsolvesthe linearcomplementaryproblemof theQP. In its
original form, it doesnothave facilitiesfor warm-startingusing
an initial estimate,andcannotexploit the separablenatureof¨ . Nevertheless,owing to the sparsityof ¨ � ¨ , which must
be stored, storagerequirementsare reasonable,even when
ORCOBRAis appliedto largedatasets.Computationalburden
is perhapsan orderof magnitudelower thanthat of the NAG
library’sdensematrixQPalgorithm.

C. Richardson iteration
Amongall methodsinvestigated,the£rst-orderRichardson

method[11, p. 276] appearsto offer the best compromise
betweenspeedof convergenceand memoryrequirements.It
alsosatis£esall of the desiredcharacteristicsspeci£edabove.
TheRichardsoniterationis givenby:ª, < � > � ª, < �i� �?> �"¾ ¨ � U3 = ¨¿ª, < �i� �?> (34)

where ª, < � > is thesolutionvectorat iteration
�

and
¾+� :

is a
parameteraffectingconvergence.Theiterationconvergesto the
leastsquaressolutionundertheconditions:ª, < _ > � range

	 ¨ � 
 ! : A ¾ A7,�ÀIÁ " � (35)



where Á � is the largest singular value of ¨ . In a manner
analogousto that proposedby Cryer [17] we obtainan NNLS
solutionby modifying theiterationin 34:�� < � >Â � EGFIH : ! ª, < �i� �Ã> ��¾ ¨ � U3 = ¨Äª, < �i� �Ã> ÂÅ � + !-,�!$././.$!/1 V

(36)

where
�� Â is the

Å
th elementof ª, andthe operator

#k' Â extracts
the

Å
th elementof a vectorargument. To avoid the dif£culty

of £ndingthelargestsingularvalueof ¨ , we initially set
¾

to a
largenumberandreduceit by half until adecreasein successive
residualsis achieved. The initial valueof

¾
shouldbesethigh

enoughsothatthealgorithmdecreases
¾

at the£rstiteration.A
¤owchartof thisalgorithmappearsin Figure7.ÆfÇ È É�È ÊÌË È ÍLÎÏÑÐ Ò6ÓIÔ�Õ:Ò×Ö�ÔØÒ Ð
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Figure7: FlowchartillustratingtheRichardsonNNLS algorithm.

D. General non-linear techniques
A further alternative is to solve the NNLS problemvia a

generalnon-linear iterative optimization scheme,such as a
conjugate gradientmethodwith parameterboundconstraints.
An advantageof this classof methodsis that it allows a more
¤exible selectionof maximumlikelihoodestimationcriterion.

We have not yet evaluatedthesemethodsfor applicationto the
ORCOBRANNLS problem.

In the experimentswhich follow, we employ the modi£ed
£rst-orderRichardsoniteration speci£edin (36). We choose
to store ¨ asa sparsematrix, ratherthanrecalculatingit every
iteration,asthis provesfasterfor this sizedatasetconsidering
theamountof RAM memoryavailable.

VI. ALGORITHM EVALUATION

A. Phantom imaging geometry and kinetics
We evaluatethe algorithmusinga phantomdataset,whose

imaging and sourcegeometries,Poissoncount statistics,and
tracer kinetics are modeledon an actual clinical myocardial
SPECTdataset. The latter is describedin detail in [7]. We
chooseto model our phantomafter this datasetas we wish,
in future work, to apply ORCOBRAto similar datasets.In so
doing,we will beableto comparetheresultsobtainedto those
yieldedby othermethodswhich have beenusedto reconstruct
thesedata[7, 5].

A myocardialdefectnotpresentin thepatientdatahasbeen
includedso we may determinethe detectabilityof the defect.
The regionsof thephantomdatasetaredelineatedin Figure8,
while thekineticsareshown in Figure9.
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Figure 8: The phantomdatasetis basedon the sourceand imaging
geometryof theclinical dynamicSPECTdata.

B. Reconstruction geometry and temporal sampling
We employ ORCOBRAto reconstructthe phantomimage

sequenceon the non-uniformresolutiongrids which appearin
Figures10, 11 and12. Thesegrids differ with respectto the
maximumresolutionof the sub-gridoverlying the heart, the
respective maximumresolutionsbeing � : ó � : , , : óW, : and+&� ó +&�

pixels. A
+&� ó +&�

grid overliestheliver, andan � ó �
grid, thebackground,in all grids.

Design of such a grid so that areasof high activity and
interestsuchas the myocardium,left ventricular (LV) blood
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Figure 9: Phantomregion kinetics appearwith symbolsdenoting
sampletimes.For thisset,eachtimepointcorrespondsto anindividual
camerarotation. Pointsmarked with a ’+’ correspondto the sample
timesof thosecamerarotationsincludedin thedatasinogram�� .

pool and liver receive £ner discretizationrequiresonly crude
localization of theseareaswithin image space. A standard
staticreconstructionalgorithmmaybeusedfor thispurpose,or
ORCOBRAmaybeappliedto a low resolutionuniformgrid.

Figure 10: The coarsestgrid used in theseexperimentsoffers a
maximumresolutionof ��������� pixels. This grid is referredto asthe
16-16-8grid, andcontains136pixels.

Owing to memoryconstraints,we includein our measured
sinogram�� , only the£rst23of the45single-rotationsinograms
acquiredby of thecamera.This time point selectionis shown
in Figure9.

All of the120generatedprojectionsperrotationareutilized
in thereconstruction.

A summaryof the imagingparametersappearsin Table1,
while parametersfor theRichardsonNNLS algorithmarelisted
in Table2.

C. Performance metric
To evaluategoodness-of-£tbetweentrue TACs and TACs

recoveredby thealgorithm,we baseour metricon � pow, which
wede£nedin (19).

Figure 11: The 20-16-8 grid possessesa maximum resolutionof�! � �! pixels andcontains184 pixels. The £nestresolutionregion
is extendedin this grid so that its width spansan integral numberof" � " -sizepixels.

Figure12: With amaximumresolutionof #  �$#  pixels,the40-16-8
grid is the £nest upon which we reconstructthe dynamic image
sequencein theseexperiments.This grid contains388pixels.

Table1
Imagingparametervalues.

Parameter Value

Imagingtime (minutes) 15
Timesamplepointsin set 45
Timesamplepoints
selected( % ) 23
Rotationsin set 45
Rotationsselected(

�
) 23

Angularprojections
in setperrotation 120
Binsper
angularprojection( & ) 64

Table2
RichardsonNNLS algorithmparametervalues

Parameter Value¾('
10) *,+(-/.



Let 0$132$4 �6587 2:9;2:<$2:=�2:>;? representtheregionsde£ned
in Figure 8. We de£nethe true TAC of region 0@1 as AB1DC,EGF ,
and its estimate,obtainedfor noise realization H by

�ABI1 C,EGF .
We may then measurethe goodness-of-£tbetweentrue and
reconstructedTACs over J noise-realizations,at a particular
noiselevel, for aparticularpixel grid con£gurationas:

J� 1
pow K *JMLIONQP � pow AB18C,EGFR2 *$ 0S1 $ T ¯�UWV �X

T C,EGF 2 (37)

where
$ 0S1 $ representsthenumberof pixelsin region 4 .

D. Phantom data reconstruction results
Tables 3, 4, and 5 give values for

J� 1
pow at various

noise-levels, for the myocardium,myocardialdefectandliver,
respectively. For testswhere noise is present,resultsgiven
are averagedover Y K[Z + noise realizations. Between-trial
standarddeviations are also tabulated. Results for the LV
blood pool and backgroundare omitted for brevity, since
theseregions are usually of less interest in the diagnosisof
myocardialperfusiondefects.

Total count values for the simulationsare given for the
full 45 rotation datasets. Owing to the reduced rotation
samplingschemeemployed,themeasuredsinogram�� to which
ORCOBRAis appliedcontainsapproximately266,000counts.
This is lessthan53% of the total eventsrecordedfor the slice
of patientdataonwhich thephantomwasmodeled.

Figure14 shows themeanTACsrecoveredfor all phantom
regions at this noise level. TheseTACs were obtainedby
averaging the pixel TACs within each region 0S1 in the
reconstructeddynamic image sequence. Several samplesof
this sequenceappearin Figure 13. Intraregion variability is
quanti£edin termsof pixel TAC standarddeviation from the
mean,asshown in Figure14.

Figure 15 illustratesan excerpt of the dynamic sequence
obtainedwhen ORCOBRA is applied to a single realization
of a phantomsinogram. The correspondingTACs appearin
Figure 16. It is clear that ‘cross-talk’ betweenthe liver and
backgroundleadsto underestimationof theliverTAC amplitude
andoverestimationof backgroundactivity.

All computationwasperformedon a PentiumIII 850MHz
processorequippedwith 512MB of RAM and 1GB of hard
disk swap space. Mean computationtimes for the various
simulationsappearin Table6.

VII . DISCUSSION

We have shown how non-negative basisfunctions, which
allow a spectralrepresentationof single compartmenttracer
kinetics using non-negative coef£cients, may be derived
from a chosenexponential spectrumvia the SVD and an
obliquerotation. Theadditionto theexponentialspectrumand
convolved exponentialspectrumof functionswhich allow for
modelingof blood pool and regionsof constantactivity have
not beenobserved to increasethe dimensionof the resulting

Table3
Goodness-of-£tof therecoverednormalmyocardialTACsis

evaluatedin termsof themetric \]_p̂ow, for variousnoise-levelsand
grid resolutions.Valuesaregiven ` betweentrial standarddeviations.

Thenumberof noiserealizationsa appearsin thelastcolumn.

Counts Pixels Noiseb�"3" c�" # c�b�d
realizationse c3fgb3h b3fgh�� b3fic�c

1j � c! /k c3fil! `  mf # b3fil�b `  mf # b3f # l `  mfgb 30

Table4
Valuesof \] p̂ow obtainedin thecomparisonof trueandrecovered

myocardialdefectTACs.

Counts Pixels Noiseb�"3" c�" # c�b�d
realizationse c3f # d �3fg"�d # fi"! 1j � c! /k �3fih #n` c3f  b3fi"�� ` c3fgl j3fij�" ` b3fgh 30

Table5
In termsof thethemetric \] p̂ow, theTAC for theliver is themore

accuratelyrecoveredthantheTACsof otherregions.

Counts Pixels Noiseb�"3" c�" # c�b�d
realizationse c3fg�3d  mfgd�l c3fi��b

1j � c! /k c3f # c `  mfic  mfi"! `  mfgc c3fib�h `  mfgc 30

Table6
Computationalstatisticsderivedfrom theexperimentalapplicationof
ORCOBRAto noise-freephantomdata.Thesecondcolumngivesthe
time neededto calculateandstorethesystemmatrix o for eachgrid

speci£edin columnone.Columnthreecontainsthenumberof
Richardsoniterationsneededto £ndthesolutionwhichattainspQq c! srmk

, while thefourthcolumngivesthetotal time to performall
iterations.Thetotal numberof ¤oatingpointoperations(in giga¤ops)

for all Richardsoniterationsappearsin the£nalcolumn.

# o prep. Iterations Optim. Optim.
pixels (min) time (min) G¤opsb�"�" c�d3fgl b! /l "�d3fic ��"3fgbc�" # # fgl ��b�d # "3fil c�h3fgjc�b�d b3fgl b�c! j�j3fi� �! mfg�

basisset. Approximationis achieved to within a meansquare
errorof *3t Z(u , andconsequentlyconstitutesaverysmallsource
of errorin thedynamicreconstructionproblem.

Scrutiny of both the recovered TACs in Figure 14 and
the reconstructeddynamic sequencein Figure 13 reveals
that the myocardialdefect is easily discerniblefrom healthy
myocardium. Limited resolution,andpossiblythe useof the
non-uniformresolutiongrid, leadsto ‘bleeding’ of regionsso
that the normalmyocardialTAC is underestimatedwhile that



Table7
Computationalstatisticsderivedfrom theexperimentalapplicationof
ORCOBRAto the

j � c! k countphantomdata.Thequantitieslisted
aredescribedin thecaptionof Table6. Whereapplicable,mean

valuesover30 testsaregiven ` onestandarddeviation.

# o prep. Iterations Optim. Optim.
pixels (min) time (min) G¤opsb�"�" c�dDfgc c! /h3fih ` c�lDfg" b�c3fgd ` c�c3f  l3fgl ` c3fi"c�" # j3fi� "�h3f  ` c�"Dfgc c�l3fgl ` c! mfid d3fgj ` c3fibc�b�d # fi� "�c3fi� ` c�jDf # c # fgj ` �3fih j3f #n` c3f  
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Figure13: Snapshotsof the reconstructeddynamicsequencev rec w xzy ,
which results from the application of ORCOBRA to a dataset
containing

�3fid�d � c! /k
total counts,a selectedsubsetof a full 45

rotation, 120 projectionset containing
j � c! /k counts. The source

distribution was reconstructedon the 40-16-8grid shown in Figure
12. Thesourceintensitieswhichappearabovearetheaverageof those
obtainedover 30 noise realizations. The myocardialdefect is well
differentiatedfrom thesurroundinghealthy tissue.

of the lessintenseLV blood pool is overestimated.Similarly,
the liver TAC is underestimated,andits activity clearlybleeds
into the surroundingbackground,leadingto overestimatesof
theactivity in thelatter. However, meansquareerrorsfor these
clinically relevant regions are below { u , even though only
half the realistic numberof photon countsfor a single slice|}|

m Tc-teboroximemyocardialstudy are utilized. Figures15
and16show resultsanalogousto thosewhichappearin Figures
13and14, for thecasewhereORCOBRAis appliedto asingle
noiserealization.

Table 7 indicatesthat the highestresolution40-16-8grid,
which is illustrated in Figure 12, is reconstructedin a mean
time of 48 minuteson a mid-speedPentiumIII CPU. This
includesthe16 minutesneededto calculateandstore ~ , which
may then be usedin multiple subsequentapplicationsof the
algorithm to datasetsfor which the projectiongeometryand
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Figure14: TACs obtainedby £nding the meanTAC of eachregion
of the full dynamic reconstructedsequence,several time samples
of which appearin Figure 13. Standarddeviations plotted relateto
intraregion variation of individual pixel TACs. Although ‘bleeding’
of regions leadsto the overestimationof the activity in less intense
regions at the expenseof underestimatingregions of high activity
suchas the healthy myocardiumand liver, recoveredTAC quality is
suf£cientto allow isolationof themyocardialdefect.

Ω
rec

[0] Ω
rec

[2] Ω
rec

[4]

Ω
rec

[6] Ω
rec

[8] Ω
rec

[10]

Ω
rec

[12] Ω
rec

[14] Ω
rec

[16]

Ω
rec

[18] Ω
rec

[20]

20

40

60

Ω
rec

[22]

Figure15: Snapshotsof the reconstructeddynamicsequencev rec w xzy ,
which resultsfrom theapplicationof ORCOBRAto asinglesinogram
containing

�3fgd�d � c! /k total counts.CorrespondingTACsareshown in
Figure16.

generalkinetic modelareappropriate.ThechosenRichardson
terminationtoleranceof ) K *�+(-/. provedoverly stringentand
executiontimesmaybehalvedwithout materiallyaffectingthe
quality of the reconstructionby selectinga more reasonable
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Figure 16: Mean TACs for each region recovered from a single
sinogramrealizationat
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valuefor this parameter, suchas ) K *�+(-/� . ComparingTable
6 (application to noisy-free data) and Table 7 (application
to noisy data) we seethat the numberof iterationsrequired
to reach the termination criterion in the noise-freecase is
greater. This is probablydue to the greatersmoothnessand
convexity of the cost function surface in the noise-freecase,
which allows a bettersolutionto befound,albeitaftera longer
searchprocess.For datasetsof this size,computationtimesare
likely to be signi£cantlyimproved by increasingthe available
RAM memoryto 1.5GB,asthis will eliminatethe delaysdue
to memoryswappingbetweenRAM andharddisk swapspace
experiencedhere.

The 503 minutesrequiredto £nd the oblique-rotatedbasis
is prohibitive in clinical applications, especially since the
ORCOBis dependenton theblood input functionandmustbe
recalculatedfor eachstudy. This problemmay be overcome
by applyingthe SVD to the original exponentialspectrum(4)
ratherthanthe convolved spectrum.An af£netransformation
may then be found that producesa non-negative basisset in
exactly the samemannerdescribedin Section III-C. This
set is appropriatefor a wide rangeof studies,as it may be
convolvedwith theinput functionfor aparticularstudyto form
a TAC basis. Such a solution for the exponentialspectrum
chosenin Section III-D was found in 42 minutes, and had
similar approximatingperformanceto the ORCOB used in
the simulations. However, modelingof constantTAC offset
function (8) is understandablypoor, sincethis functioncannot
bemodeledin theunconvolvedspectrumwithoutknowledgeof
the input function. Accurateapproximationof suchfunctions
requiresaugmentationof theORCOBwith aconstantfunction.
This hasthe disadvantageof increasingthe sizeof the inverse
problemby a factorof � ��� *���� � .

A secondcharacteristicof the algorithm which detracts
from its clinical utility is the requirementthat a goodestimate

of thebloodinput functionbeavailable.Accuratemeasurement
of this function via arterial blood sampling is logistically
dif£cult and signi£cantly increasesthe cost and complexity
of ECT studies. An alternative is to estimatethe blood input
functionfrom theactivity within theleft ventricularbloodpool.
This is dif£cult in the caseof the DRIP problem, since the
activity within this region cannotbe obtainedfrom an image
series. Reutteret al. have shown how a basisof 16 B-splines
areableto approximatewith reasonableaccuracy the regional
TACsof myocardialstudies[12]. While generalapproximating
functionssuchas B-spinesdo not enforceconsistency with a
particular kinetic model, they appearto be adequatefor the
solution of the DRIP problem when the numberof regional
TACs to be estimated(and hence the size of the inverse
problem)is small. In caseswherethe applicationof standard
(static) reconstructionalgorithms to inconsistentprojection
data is suf£cient to allow the image domain to be crudely
segmentedinto bulk regions (myocardium, liver, LV blood
pool andbackground),reasonableestimatesfor thebloodinput
functionmight beobtaineddirectly from projectionsusingthe
methodof Reutteret al. ORCOBRA could then be invoked
to producehigher resolutionreconstructionsdirectly from the
projectiondata.Theconsistency betweenthemeanTAC of the
LV bloodpool obtainedby ORCOBRA,andtheinput function
estimatemight serveasameasureof theaccuracy of thelatter.

Futurework will involve the developmentof second-order
iterative methodsin order to increasethe convergencerate
of ORCOBRA. The algorithm will also be further evaluated
through its application to the clinical data upon which the
phantomwasmodeled.
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